A Random Forests Analysis of Reading-Related Skills and White Matter Tractography Julie A. Van Dyke¹, Kazunaga Matsuki^{1,2}, Hannah R. Jones⁴, Peter J. Molfese^{1,3}, Andrew Jahn¹, Clinton L. Johns¹, Dave Kush¹, Morgan L. Bontrager¹ ¹Haskins Laboratories, ²McMaster University, ³University of Connecticut, ⁴University of Rochester # (Haskins Laboratories) #### INTRODUCTION Random Forests is a machine-learning based, non-parametric statistical technique for estimating *variable importance* (Breiman, 2001; Matsuki et al., in press) - Variable importance refers to a predictor's contribution to explaining response variability - Especially effective when predictors are collinear, as with reading-related skills - Built-in protection against model-overfitting makes it very effective when ratio of predictors to observations is high. - Data-driven method for identifying potentially interesting variables. - Especially suited to exploring DTI data, where functional and theoretical models are still nascent ## **METHOD** **Subjects:** 74 participants, aged 16-24 recruited from the New Haven, CT community. Many were not college-attending. **Skill measures:** A 5+ hour battery of reading assessments delivered over 2 days, yielding 15 composite measures (see ASSESSMENTS) **Diffusion data acquisition and analysis:** TORTOISE 2.0.1 (Pierpaoli et al., 2010) was used for co-registration and non-linear tensor fitting. TRACULA (Yendiki et al., 2011) within Freesurfer 5.3 was used to extract Fractional Anisotropy (FA), Mean Diffusivity (MD), tract Volume, and Average Path length for 18 white-matter tracts. Volume and Path Length were corrected for total brain volume. ## **ASSESSMENTS** ## TRACTOGRAPHY 5116 Right Superior Longitudinal Fasciculus - Temporal 5117 Right Uncinate Fasciculus #### **DECISION TREES** Partitions data at various cutpoints to preserve homogeneity. In this tree, individuals with Phonological Memory ≤ 104 are more similar, and those individuals are further partitioned at inhibition scores of -.711. That is, if Phono Memory ≤ 104 then Inhibition ability also matters. **Decision Rules** Node 3: If Phono Memory ≤ 104 AND If Inhibition ≤ -.711 then mean Tract Volume in LSLF-Temporal is -798. Node 4: If Phono Memory ≤ 104 AND If Inhibition > -.711 then mean Tract Volume in LSLF-Temporal is -108. Node 5: If Phono Memory > 104 then mean Tract Volume in LSLF-Temporal is 373. ### **RANDOM FOREST METHOD** A Forest of Decision Trees is created from multiple random samples of data and predictors. Predictor importance was assessed via a procedure that randomly shuffles the predictor among the trees to determine how its presence or absence affects data modeling. Rankings shown below are aggregated over 10,000+ decision trees. #### WHY USE RANDOM FORESTS? - Efforts to relate extensive skill batteries to DTI measures suffer from high risk of model overfitting. - Reading-related skills are highly collinear. Condition number is an index of collinearity and should be < 30 (Dormann et al.) Condition number for this (typically-sized) Assessment Battery is ≈ 118. - Data compression methods (e.g., PCA) are not always interpretable. - Factor 1 ≈ Phonological Ability - Factor 3 ≈ Rapid Naming - Factor 2 ≈ ? (subjectivity) In this data, no correlations of PCA Factors with DTI one of the correlation Correlations surviving correction: Tract Volume— corpus callosum forceps minor: NWREAD and SYN. Mean Diffusivity— Left Anterior Thalamic Radiation: SYN #### FEATURED RESULTS Confirmatory Results (Consistent with previous findings) - 1) Syntax is highest ranked measure related to FA and MD in Uncinate and Superior Longitudinal Fasciculi (e.g., Friederici & Gierhan, 2013; Wilson et al., 2011). - 2) Nonword reading is highest ranked measure related to Tract Volume in Left Uncinate and Corpus Callosum (Welcome & Joanisse, 2014) Hypothesis Generation (Novel Findings) - (3) Tract volume in Right Cingulate Gyrus is related to many reading skills. - 4) Phonological Memory is a highly ranked predictor for the size-related dependent measures (Volume, Path Length) of multiple tracts. - 5. Many other skills are identified as highly ranked predictors of particular tracts. These warrant additional confirmatory testing. ### CONCLUSIONS The Random Forests method provides a valuable tool for exploring the relationship between reading-related skills and white matter tracts. - Especially valuable due to collinearity of skill assessments, which is pervasive in reading and language research. - This approach provides a means of maximizing the usefulness of comprehensive assessment batteries in neurobiological research, and can lead to novel hypotheses about the function of white matter in language processing and reading disability. #### **REFERENCES & ACKNOWLEDGEMENTS** Breiman (2001). *Machine Learning, 45*; Dormann, et al. (2012) *Ecography, 35*; Friederici & Gierhan (2013). Current Opinion in Neurobiology, 23; Matsuki et al. (in press). Scientific Studies of Reading; Pierpaoli et al. (2010). ISMRM 18th annual meeting, #1597; Welcome & Joanisse (2014). *NeuroImage, 96*; Wilson et al. (2011). *Neuron, 72*(2); Yendiki et al., (2011). *Frontiers in neuroinformatics, 5*. Thanks to Victor Kuperman and W. Einar Mencl for helpful discussions. This research was supported by NIH grant HD073288 (Van Dyke, PI).